Ciena’s 8700 Packetwave® Platform—a multi-terabit programmable coherent DWDM packet switch—addresses the growing need to efficiently aggregate and switch large quantities of traffic while guaranteeing stringent Service Level Agreements (SLAs), revolutionizing the capital and operational economics of 10GbE and 100GbE services in metro and regional networks.

As data center and end-user applications continue to proliferate, IP/MPLS-dominated traffic is surging, running from user to content and from content to content. This growth creates significant changes to the patterns, dynamics, and scale of traffic within metro networks. The 8700 is purpose-built to provide seamless, MEF-compliant services, together with L3 services, over a carrier-class, connection-oriented infrastructure. The 8700 uses both MPLS-TE and MPLS-TP, with future support of segment routing for further scalability and programmability.

Due to continued bandwidth demand growth in metro networks worldwide, this particular part of the global network infrastructure has become the crux of network transformation opportunity. The rising popularity of 10GbE and 100GbE ports, connections, and services has created a new business requirement for optimized 10GbE to 100GbE switching and aggregation that leverages the very latest in routing and switching and Ciena’s WaveLogic™ 3 Nano 100G coherent DWDM optical technologies. Available in both 4-slot and 10-slot variants (counting only I/O slots), the 8700 provides 1G/10G/40G/100G ports with up to 680 Gb/s per slot, for a total non-blocking capacity of up to 2.7 Tb/s (4-slot) and 6.8 Tb/s (10-slot).

Features and benefits

- Exceptional 1GbE, 10GbE, 40GbE, and 100GbE density to address space constraints
- Flexible port configurations up to 300 x 1GbE, 300 x 10GbE, 80 x 40GbE, 20 x 100G DWDM, or 60 x 100GbE
- Low power consumption to keep operating expenses in check
- Multiple configuration options with fully modular 4-slot or 10-slot chassis variants
- MEF CE 2.0-certified for E-Line, E-LAN, E-Tree, and E-Access for improved service offerings; E-Line and E-Access up to and including 100GbE
- Hardware-assisted OAM capabilities for guaranteed SLA differentiation
- Zero-Touch Provisioning (ZTP) for rapid, secure, and error-free turn-up of services
- Ciena’s MCP multi-layer provisioning support for end-to-end network management control and planning
- Integrated Service Activation Testing capabilities
- Seamless integration with Ciena’s WaveLogic Photonics platforms
Industrially leading 10GbE and 100GbE density
Continued annual growth in metro networks bandwidth demand is driving a change in the mix of connections and services, from 1GbE aggregation into 10GbE to 10GbE aggregation into 100GbE. In addition, demand for high-speed 100GbE UNI services is steadily increasing. This shift toward higher bandwidth services means that metro and regional Ethernet networks, once optimized for lower, 1GbE rates, are no longer aligned to changing metro network traffic trends. The 8700 is specifically optimized for 10GbE to 100GbE switching and aggregation, allowing network operators to intercept a rapidly shifting market toward higher rate ports, services, and connections.

Three key factors are essential for designing today’s routing and switching networks: density, power consumption, and scalability. For density, it is important to integrate as much bandwidth as possible and use very high-speed links. Reducing power means using a minimum number of efficient integrated links and reducing the number of off-chip interfaces on a highly scalable fabric. Most importantly, networks should use a highly efficient scalable Ethernet/OTN fabric to connect those high-speed links.

Compact, dense capacity
Efficient use of real estate assets is a growing concern for network operators who either house their own network equipment or lease space in collocation facilities. Financial margins are under pressure from over-the-top applications and services that drive network expansion faster than revenues.

Space is increasingly limited and expensive, and network operators face substantial capital expenditures to open up new locations, or must retire active equipment to free space for new, denser equipment. Addressing bandwidth demand growth by deploying more and larger equipment is simply not a sustainable business model.

Ciena’s 8700 platform offers industry-leading 10GbE and 100GbE with high port density and multiple fabric options in two modular chassis, providing greater choice, flexibility, and capacity.

Energy-efficient 10GbE and 100GbE
Energy costs are the primary contributor to surging monthly operating expenses for most network operators, fueled by the massive demand for connectivity. The increasing affordability of smart devices, high-speed access, and seamless video streaming drive the pressing need for innovative networking solutions that consume significantly less energy for powering and cooling network equipment.

The 8700 achieves high energy efficiency and low energy consumption, so it is better for the environment and network operators’ bottom line.

Learn more about how the 8700 Packetwave Platform can lower energy costs

Massive scalability
In addition to low power and footprint, the service aggregation switch should scale to support subscriber interfaces. Ciena’s 8700 was purpose-built for new market trends, scaling to a massive 6.8 Tb/s.
Simpler metro and regional networks

With the changing scale and dynamics of metro and regional networks, continuing to build out networks in traditional ways is simply unsustainable. The platform leverages Ciena’s Service-Aware Operating System (SAOS), which supports advanced OAM, QoS, and MPLS features and protocols. The platform paves the way for seamless MPLS and future technologies such as segment routing.

Game-changing WaveLogic Photonics integration

The two technologies that have most impacted the efficiency and economics of metro networking in the past decade are Ethernet and photonics. Technology in both of these areas continues to advance at a frenetic pace, with no signs of abating. By combining these two important technologies into a common Ethernet switching and aggregation platform, network operators can optimize their metro and regional networks, yielding measurable benefits in simplicity, capacity, scalability, power, and space efficiency, along with compelling economics. Ciena combines the advanced routing and switching capabilities of SAOS with the latest award-winning WaveLogic Photonics and WaveLogic 3 Nano technologies in the 8700 Packetwave platform, allowing network operators to build intelligent, packet-optimized photonic networks that are both simpler and highly cost-effective.

Differentiation through service velocity

Service velocity has become a critical competitive advantage for network operators the world over. In many cases, service velocity is the determining factor in winning new service sales. In most competitive markets, it is simply no longer viable to ask customers to wait months for new services to be provisioned. The 8700 implements Ciena’s unique ZTP capabilities, allowing network operators to rapidly deploy new IP/MPLS services in a completely automated manner. With no human intervention required, manual provisioning errors are eliminated. Most importantly, ZTP improves service deployment and velocity and offers significant competitive advantage.

Rich OAM capabilities

As network operators and their customers migrate away from legacy TDM-based ports, connections, and services to new IP/MPLS networks, guaranteed service levels must be maintained, and, in many cases, improved. Routing and switching must support a broad array of Operation, Administration, and Maintenance (OAM) capabilities to ensure network operators can proactively and reactively maintain and report on the ongoing health of their metro Ethernet networks and services. The 8700 supports a comprehensive set of hardware-assisted OAM capabilities, including per-service Ethernet fault (IEEE 802.1ag) and performance monitoring (ITU-T Y.1731 and TWAMP) and embedded Service Activation Test (RFC2544 and Y.1564 KPI’s) to help guarantee and manage strict, market-differentiating SLAs.

Simplified multi-layer management and control

Ciena’s Manage Control and Plan (MCP) domain controller offers a unique and comprehensive solution for the administration of mission-critical networks that span across access, metro, and core domains. The MCP provides unprecedented multi-layer visibility from the photonic layer to the packet layer. With this innovative management approach, Ciena’s MCP returns control of the metro network and services directly to the network operator. By providing a unified view to the network from the photonic to the packet layer, network operations are simple, secure, and highly cost-effective.

Flexible service delivery configurations

The 8700 Packetwave platform supports a flexible menu of service offerings, including MEF-compliant E-Line/E-LAN/E-Tree/E-Access and L3 services, over a carrier-class, connection-oriented infrastructure using both MPLS-TE and MPLS-TP. Integrated Routing and Bridging (IRB) functions support efficient L3 forwarding that facilitates specific scenarios common in LTE-A and future 5G scenarios.

Future-proof scalability

Making liberal use of Ethernet, IP, and MPLS technology, the 8700 can scale to support any number of network architectures in view of varying market requirements for 5G mobile backhaul, Ethernet Business Service delivery, and Data Center Interconnect (DCI), to name a few. For example, the use of Seamless MPLS using BGP-LU creates a scalable network hierarchy extending across regional RSVP-TE domains that would otherwise become complex and unwieldy. The solution works with today’s MPLS environments, and can evolve to support modern routing and switching technologies such as seamless MPLS and segment routing while leveraging SDN control and programmability.
Technical Specifications

Physical Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>4-Slot</th>
<th>10-Slot</th>
</tr>
</thead>
<tbody>
<tr>
<td>W X D X H (mm)</td>
<td>483 x 600 x 267</td>
<td>483 x 600 x 445</td>
</tr>
<tr>
<td>W X D X H (Inches)</td>
<td>19 x 23.5 x 10.5</td>
<td>19 x 23.5 x 17.5</td>
</tr>
<tr>
<td>Chassis Per Rack</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Weight (Max)</td>
<td>91Lb/42Kg</td>
<td>147Lb/66Kg</td>
</tr>
<tr>
<td>DC Input</td>
<td>-40Vdc to -60Vdc</td>
<td>-40Vdc to -60Vdc</td>
</tr>
<tr>
<td>AC Input</td>
<td>180Vac to 265Vac</td>
<td>180Vac to 265Vac</td>
</tr>
<tr>
<td>Power Consumption (Watts@)</td>
<td>1201 (Typical)</td>
<td>2113 (Typical)</td>
</tr>
<tr>
<td></td>
<td>1960 (Maximum)</td>
<td>3043 (Maximum)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>32°F to 104°F</td>
<td>32°F to 104°F</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°F to 158°F</td>
<td>-40°F to 158°F</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 90% (Non-Condensing)</td>
<td>5% to 90% (Non-Condensing)</td>
</tr>
<tr>
<td>Air Flow</td>
<td>Right Front to Left Rear</td>
<td>Lower Front to Upper Rear</td>
</tr>
</tbody>
</table>

Service Line Modules (SLM):
- PSLM-680-8: 6x QSFP28, 2x QSFP+ ports
- PSLM-400-31: 30x SFP/SFP+, 1x QSFP28 ports
- PSLM-200-20: 20x 1GbE/10GbE SFP/SFP+ ports
- PSLM-200-2: 2x 20GbE/100GbE CFP ports
- CLSL-200-2: 2x 100G OTU-4 wrapped 100GbE over WaveLogic 3 Nano DWDM ports
- PSLM-200-11: 10x SFP/SFP+, 1x QSFP28 ports

Any module; any slot

Carrier Ethernet OAM
- MEF CE 2.0 Certified
- E-Access: Access EPL, Access EVPL
- E-LAN: EP-LAN, EVP-LAN
- E-LINE: EPL, EVPL
- E-Tree: EP-TREE, EVP-TREE

Control Timing & Switch Module
- PSLM-680-8: 6x QSFP28, 2x QSFP+ ports
- PSLM-400-31: 30x SFP/SFP+, 1x QSFP28 ports
- PSLM-200-20: 20x 1GbE/10GbE SFP/SFP+ ports
- PSLM-200-2: 2x 20GbE/100GbE CFP ports
- CLSL-200-2: 2x 100G OTU-4 wrapped 100GbE over WaveLogic 3 Nano DWDM ports
- PSLM-200-11: 10x SFP/SFP+, 1x QSFP28 ports

Any module; any slot

Switch Module (SM/SM-HD):
- No external interfaces
- SM, 800 Gb/s
- SM-HD, 2.27 Tb/s

Input / Output Module (IOM):
- 16x External alarm inputs; 4x External alarm outputs
- 2x RJ-45 sync input/output port
- 4x SMB sync input/output ports

Ethernet
- Hierarchical Quality of Service (HQoS) including Ingress Metering/Egress shaping
- IEEE 802.1ad Provider Bridging ([Q-in-Q] VLAN full S-VLAN range
- IEEE 802.1D MAC Bridges
- IEEE 802.1p Class of Service (CoS) prioritization
- IEEE 802.1Q VLANs
- IEEE 802.3 Ethernet
- IEEE 802.3ab 1000Base-T via copper SFP
- IEEE 802.3ad Link Aggregation Control Protocol (LACP)
- IEEE 802.3ba-2010 40GbE & 100GbE
- IEEE 802.3z Gigabit Ethernet
- Jumbo Frames to 9,600 bytes
- Layer 2 Control Frame Tunneling
- Link Aggregation (LAG): Active/Active; Active/Standby
- Multi Chassis-LAG (MC-LAG): Active/Standby
- MEF 10.2 Egress Bandwidth Shaping per EVC per COS
- Per-VLAN MAC Learning Control
- Private Forwarding Groups
- VLAN tunneling ([Q-in-Q] for Transparent LAN Services (TLS)

Carrier Ethernet OAM
- MEF CE 2.0 Certified
- E-Access: Access EPL, Access EVPL
- E-LAN: EP-LAN, EVP-LAN
- E-LINE: EPL, EVPL
- E-Tree: EP-TREE, EVP-TREE

Synchronization
- Line Timing Interfaces:
 - 1GbE/10GbE In and Out (PSLM-200-20)
 - 40GbE/100GbE In and Out (PSLM-200-2)
 - OTU-4 wrapped 100GbE In and Out (CSLM-200-2)
- External Timing Interfaces:
 - BITS In or Out (T1: 1.544Mb/s, E1: 2.048Mb/s and 2.048Mb/s)
 - GPS Frequency In or Out (1.544MHz, 2.048MHz, and 10MHz)

Carrier Ethernet OAM
- MEF CE 2.0 Certified
- E-Access: Access EPL, Access EVPL
- E-LAN: EP-LAN, EVP-LAN
- E-LINE: EPL, EVPL
- E-Tree: EP-TREE, EVP-TREE

Synchronization
- Line Timing Interfaces:
 - 1GbE/10GbE In and Out (PSLM-200-20)
 - 40GbE/100GbE In and Out (PSLM-200-2)
 - OTU-4 wrapped 100GbE In and Out (CSLM-200-2)
- External Timing Interfaces:
 - BITS In or Out (T1: 1.544Mb/s, E1: 2.048Mb/s and 2.048Mb/s)
 - GPS Frequency In or Out (1.544MHz, 2.048MHz, and 10MHz)

Carrier Ethernet OAM
- MEF CE 2.0 Certified
- E-Access: Access EPL, Access EVPL
- E-LAN: EP-LAN, EVP-LAN
- E-LINE: EPL, EVPL
- E-Tree: EP-TREE, EVP-TREE

Synchronization
- Line Timing Interfaces:
 - 1GbE/10GbE In and Out (PSLM-200-20)
 - 40GbE/100GbE In and Out (PSLM-200-2)
 - OTU-4 wrapped 100GbE In and Out (CSLM-200-2)
- External Timing Interfaces:
 - BITS In or Out (T1: 1.544Mb/s, E1: 2.048Mb/s and 2.048Mb/s)
 - GPS Frequency In or Out (1.544MHz, 2.048MHz, and 10MHz)
Networking Protocols

- Alarm Indication Signaling (AIS) with Link Down Indication (LDI) and Remote Defect Indication (RDI)
- Automatic Pseudowire Reversion
- ITU-T G.8032 v1, v2, v3 Ethernet Ring Protection Switching
- Layer 2 Control Frame Tunneling over MPLS Virtual Circuits
- MPLS Label Switch Path (LSP) Tunnel Groups
- MPLS Label Switch Path (LSP) Tunnel Redundancy
- MPLS Multi-Segment Pseudowires
- MPLS Virtual Private Wire Service (VPWS)
- OSPF/IS-IS for Dynamic MPLS-TP Control Plane
- RFC 2205 RSVP
- RFC 3031 MPLS architecture
- RFC 3209 RSVP-TE: Extensions to RSVP for LSP
- RFC 4447 Pseudowire Setup & Maintenance using Label Distribution Protocol (LDP)
- RFC 4448 Encapsulation Methods for Transport of Ethernet over MPLS Networks (PW over MPLS)
- RFC 4664 Framework of L2VPN (VPLS/VPWS)
- RFC 4665 Service Requirement of L2 VPN and Hierarchical VPLS (H-VPLS)
- RFC 5654 MPLS-Transport Profile (TP)
- - LSP Static provisioning
- - LSP Dynamic Provisioning
- - 1:1 Tunnel protection
- RFC 5884 LSP Bidirectional Forwarding Detection (BFD) via GAL/G-Ach channels
- RFC 6215 MPLS Transport Profile User-to-Network and Network-to-Network Interfaces
- RFC 6426 MPLS On-demand Connectivity Verification and Route Tracing
- RFC 6428 LSP and PW Connectivity Verification and Trace Route
- Static ARP and MAC Destination Address Resolution
- VCCV (Virtual Circuit Continuity Check) Ping and Trace Route
- Multicast
- DHCPv4 Relay Agent with Option 82 G.8032/IGMP interworking
- IGMP over MPLS-TP
- IGMPv3 with SSM

CSLM-200-2 Optical Performance

- 50GHz/100GHz grid support
- FEC Net coding gain: 12.1dB
- Nominal full-fiber reach: 120km unamplified to 1,000km amplified
- PMD Tolerance: 150ps mean; 450ps instantaneous
- Rx Sensitivity: -26 dBm
- Service and Photonic Line Interoperability (SPLI) Tunable from 1528.77nm to 1566.72nm
- Tx Output Power, provisionable: -11dBm to +7.5dBm

Network Management

- Alarm Management & Monitoring Configuration
- Comprehensive Management via OneControl Enhanced CLI
- Integrated Firewall
- IPv4 & IPv6 Management Support Local Console Port
- Per-VLAN Statistics Port State Mirroring
- RADIUS Client and RADIUS Authentication
- Remote Auto configuration via TFTP, SFTP
- Remote Link Loss Forwarding (RLLF)
- RFC 8101 File Transfer Protocol (FTP)
- RFC 1035 DNS Client
- RFC 1213 SNMP MIB II
- RFC 1350 Trivial File Transfer Protocol (TFTP)
- RFC 1493 Bridge MIB
- RFC 1573 MIB II interfaces
- RFC 1643 Ethernet-like Interface MIB
- RFC 1757 RMON MIB - including persistent configuration
- RFC 2021 RMON II and RMON Statistics
- RFC 2131 DHCP Client
- RFC 3877 Alarm MIB
- RFC 4291 – IPv6 addressing (for Management Plane)
- RFC 4443 – ICMPv6
- RFC 4462 – Stateless address auto-configuration
- RFC 5905 NTP Client
- Secure File Transfer Protocol (SFTP) Secure Shell (SSHv2)
- SNMP v1/v2c/v3
- SNMP v3 Authentication and Message Encryption
- Software upgrade via FTP, SFTP Syslog with Syslog Accounting
- TACACS + AAA
- Telnet Server
- Virtual Link Loss Indication (VLLI)
- Zero Touch Provisioning

Service Security

- Broadcast Containment Egress Port Restriction
- Hardware-based DOS Attack Prevention Layer
- 2, 3, 4 Protocol Filtering
- User Access Rights

Agency Approvals

- Australia C-Tick (Australia/New Zealand) CE mark (EU)
- - EMC Directive (2014/30/EU)
- - LVD Directive (2006/95/EC)
- - RoHS2 Directive (2011/65/EU)
- ETSI 300 019 Class 1.2, 2.2, 3.2
- GR-1089 Issue 6 – NEBS Level 3
- GR-63-CORE, Issue 4 – NEBS Level 3, Zone 4
- Earthquake
- NRTL (NA)
- VCCI (Japan)

Standards Compliance

Emissions:
- CISPR 22 Class A CISPR 32 Class A EN 300 386
- EN 55022
- EN 55032
- FCC Part 15 Class A GR-1089 Issue 6
- Industry Canada ICES-003 Class A VCCI Class A

Environmental:
- RoHS2 Directive (2011/65/EU)
- Immunity (EMC):
 - CISPR 24
 - EN 300 386
 - EN 55024
- GR-1089 Issue 6 Power:
 - ETSI EN 300 132-2
 - ETSI EN 300 132-3

Safety:
- ANSI/UL 60950-1 2nd edition 2007 CAN/CSA C22.2 No. 60950-1-07 EN 60950-1
- IEC 60950-1

Visit the Ciena Community Answer your questions